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Abstract-The problem of finding local and volume averaged stresses in a two-dimensional het­
erogeneous solid is formulated in terms of fundamental point load solutions (Green's function)
leading to singular integral equations. The resulting equations are solved approximately using a
subdomain method in which closed form solutions for a rectangular subdomain are obtained and
utilized to find the full field solution. Previously. closed form solutions for a rectangular subvolume
had been found, but only for the case of an assumed constant strain. In the present paper the
solution is obtained for a quadratic form which includes not only the usual constant term but also
linear and quadratic terms. The advantages of using the higher order solutions is illustrated by
finding the local field in a periodic composite with square fibers. The numerical solution takes less
than 90 CPU s on a workstation. The solution yields average properties independent of the reference
modulus as would be expected for an accurate solution of the singular integral equation and the
effective transverse modulus vs volume fraction is close to that from Christensen's model developed
for round fibers. !!-j 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Composites; Singular integral equation; Green's function; Eigenstrain; Contour
integral; Subdomain.

1. INTRODUCTION

In the mechanics of heterogeneous materials there is an interest in computing the
volume averaged properties from the geometry and constituent properties and in computing
the local fields. Average stiffness properties are important in the design phase of a project
and local fields are important for understanding local failure and damage. A wide variety
of approaches have been used to obtain useful results, many of which are summarized in
the following references: Aboudi (1991) ; Accorsi and Nemat-Nasser (1986); Bahei-El-Din
et at. (1987); Christensen (1990); Mura (1987); Nemat-Nasser and Hori (1993); and Zhao
and Weng (1990).

In the present work the problem is approached using fundamental solutions and
singular integral equations (SIEs), i.e., via a Green's function approach. The challenge is
in solving the singular integral equations for the geometries considered. For periodic
composites representative volume elements (RVE) are used. For various specific cases
previous researchers have obtained analytical solutions, Eshelby (1957), Mura (1987) or
used numerical methods in which the strain is treated as a constant inside subvolumes that
are square, Nemat-Nasser and Hori (1993), Walker et at. (1989), or triangular Walker et
at. (1993). In the present work rectangular subdomains are used. However, the strain was
represented as a quadratic polynomial. An analytical evaluation of the singular integrand
function for a rectangular subvolume is then obtained for quadratic polynomial strains.
This evaluation requires a special treatment of the singularity and the use of symbolic
manipulation software. In evaluating the integral equation a small region around the
singularity is treated using contour integration and that region is let shrink to zero. In the
remaining region the result is obtained in closed form and when the singular region is
shrunk to zero the integral in a Cauchy's principal value sense is obtained. The strain within
each subdomain is expressed in terms of strains at selected collocation points so that a set
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of algebraic equations for the collocation point strains are readily obtained and solved.
Thus, a polynomial representation of local strains is obtained in terms of col1ocation
point strain values. Example results are computed for a layered composite by a quadratic
polynomial approach and a periodic composite with rectangular fibers by three polynomial
(quadratic, linear and constant) approaches. It is of interest to note that the effective
transverse modulus and the volume average strain energy are independent of the reference
material modulus choice, which is expected for accurate solutions. The results also compare
favorably with the results of others.

2. THE SIE APPROACH

The local strain field, cir), at any point r(xj, X2, x 3 ) in the representative volume element
(RVE) of an infinite, periodic fibrous lattice is determined, Walker et al. [1993, eqn (3.8)],
by the singular integral equation:

Cij(r) = c~- fffUijkAr-r')bCkhnn(r')crnn(r')dV(r')

v

+ ~Jffdyer) fff Uiik/(r-r')bCk'rnn(r')crnn(r')dV(r') (1)

v, v

where c~ are the strain tensor components applied to the infinite periodic lattice. V is the
whole material domain, and Vc denotes the representative volume element (RVE). The
RVE is the smal1est representative unit in a periodic composite or for random composites
a volume of sufficient size so as to yield averaged properties to the desired accuracy.
r'(x;, x;, x;) is the position vector representing the source point. The tensor components
bCk1rnn(r') are defined by the relation, bCk1rnn(r') = Ck1mn(r') - cZ1mm and give the component
deviation of the elastic stiffness tensor at any field point r(xl> X2, X3) from the homogeneous
reference tensor components, CZ1mn- The second term in eqn (I) represents the strain per­
turbation brought about by inserting the prismatic cylindrical fibers into an infinite homo­
geneous medium with reference elasticity components CZ1mm while the third term ensures
that the volume average of the local strain fields, (;ij(r), over the RVE, is equal to the applied
strain, c~.

In the preceding equation,

(2)

are the fourth rank tensor components, which give the ij component of the strain at the
field point r(xj,x2,X3) due to the kl component of a stress applied at the source point
r'(x;, x;, x;) in an infinite homogeneous medium with the reference stiffness tensor com­
ponents, cZ1mn ; Gik(r - r') are the Green's function components, shown in the Appendix for
the isotropic material.

If the integration domain V contains the field point, r(xl' X2, X3), i.e., r(xj, X2, X3)
coincides with source point r'(x'J,x;,x;), UijkAr-r') is singular. Thus, we have a governing
singular integral equation.

3. EVALUATION OF THE SIE

Experimental results by Dow et al. (1966) and finite element calculations by Ghosh
and Moorthy (1995) show that the local strain field over each phase, either matrix or fiber
phase, changes smoothly. We therefore approximate the strain field over each subdomain
by a quadratic polynomial, and assuming al1 values are independent of x;, we have
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where 110-118 are nine constants.
The RVE is assumed to be divided into a total ofp subdomains with Vk (k = 1,2, ... ,p)

denoting the volume of the kth subdomain. Each subdomain is further assumed to contain
only one material phase. We now restrict our attention to the ctth field point in subdomain
k, r.(x~, x~, x~) E Vb and evaluate this singular integration in eqn (1) in two steps as follows.
We first take a small prismatic cylinder V,quare: Ix~ -x;1 < 15, Ix~-x;1 < 15, - XJ < x; < XJ,

15 > 0, surrounding the singular point, r,(x~, x~, x;) with its axis on the line x; = x~,

x; = x~, X'3 = ± 00. If the prismatic cylinder is then shrunk to zero, i.e. 15 -> 0, the integral
can be evaluated in Cauchy's principal value sense as follows:

IfIUijkAr, - r')bCk1mn(r')emn(r') dYer') = limv,q""e_O ( IfJ UijkAr, - r')bCklmn(r')/;mn(r') dYer')

V k Vk.-VstIUilfC

+ IIf UiikAr,-r')bCklmir')8mn(r')dV(r'») (4)

"'square

(1) Inside the prismatic cylinder, V,quare
As the prismatic cylinder shrinks to zero, both the strain and the material properties

over this small domain are constants due to continuity, and they can be taken as the values
at that field point r,(x~, x~, x;).

Thus, we have the following:

IIIUijdr, - r')bCk1mn(r')/;/tm(r') dV(r') = IIIUijkAr, - r') dV(r')bCk1mir.)/;mn(r,). (5)

vsquare V squan

The prismatic cylinder can contain a small enough circular cylinder Vr.:
(X~-X;)2+(X~-X;)2 = /;2, -00 < x; < 00, °< /; < ci, also with the line x; = x~, x; = x~,

x; = ± 00, as its axis. Thus,

III UijktCr• - r')bCk1mn(r,) dYer') = IIIUiiktCr, - r')bCk1mn(r,) dYer')

"'square V r

+ Iff UijkAr,-r')bCk1mn(rJdV(r'). (6)

"SL\lIu"e- V /

Now the first term on the r.h.s. of eqn (6) can be found by using Eshelby's (1957) results as
follows:

IIIUijkAr.-r')bCk1mn(rJdV(r') = III Uijrir,-r')C~\.kICZ1~,.lbCm'lt1,,(r,)dV(r')
v v

= III Uijrs(r.-r')C~skldV(r')C21~,lbCUI'It1I1(r,) = SiiklCZI~/bCUlmn(r,), (7)

v,

where Sijkl is the fourth-order Eshelby tensor.
Since the integrand function is continuous in the remaining domain, Vsquare - V" and

all values are independent of x;, the second term on the r.h.s. of eqn (6) can be reduced to
a two-dimensional integral and the contour integral then can be applied as follows:
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ff aijdx~ - X'1, x~ - X;)bCklmn(X~, xD dX'1 dx;

Asquarc~Ai

f Vijdx~ - x'), X~ - x;) dx;bCklmn(x~,x~), (8)

CciquarC-CI

where the fourth-order tensor components aijkl and Vijkl are given in the Appendix. The
above contour integral for either a square or a circle is constant and given by eqns (A9)
and (AlO) in the Appendix.

(2) Outside the prismatic cylinder, V k - Vsquare

Iff UijkAr,-r')c5Cklmn(r')Gmn(r') dV(r')

,,/c-Vsquarl.:

II dx; dx; t:~~J"X UiiktCr,-r')bCklmnCr')Emn(r')dx;

AA,-Asquarc .

ff aijdx~ - x'), x~ - X;)bCklnU/(X'), X;)Bmn(X;, xS) dA(x'I' xS)

Ak-Asquan:

= (lXi-ii + IX' .) (IX
2
-,j + IX" .) aiiktCx~ - x;, x~ - x;)c5Cklmn(x'l, x;k",,(x') , x;) dx; dx;,

\"') .\")+0 xS "02+6

(9)

where the area A k is the projection of the volume Vk in the x;-x; plane;
Ak = (x~ < XI < x~,xi < X 2 < x'2)EA,., where the area A, is the projection of V,.,
A, = A) +A2 +.. ·Ak +... +Ap , shown in Fig. 3; and x'), x'! ; xi, x'2 are the limits of sub­
domain Ak in XI> X2 directions, respectively.

crO = 3779 cr'=3779

~
Fiber Material

I I
Matrix Material

Fig. 1. A composite with layered structure [ao( x 104
) Pal. E,IE", = 3, v, = v'" = 0.3. VI = 0.1.
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Fig. 2. Stress 0'1I( x 10' PaJ over a composite with layered structure.
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Using a symbolic manipulation software, a closed form integration in eqn (9) can be
obtained when the local strain smn(x~, x;) is represented as a quadratic polynomial in eqn
(3). The limit value as b -> 0 in eqn (6) can then be obtained in closed form (see the
Appendix).

For r(x~,x~,X~HVk or (xLxD¢Ak, there are no singularities and the closed form
evaluation in eqn (9) also applies.

Equations (7)-(9) can be added together to obtain the expression for the integral within
a subdomain. For a RVE with multiple subdomains there will be, in addition to equations
(7)-(9), contributions from subdomains 1 to p, and we obtain the integral expression
covering the whole RVE,

Subdomain A, Subdomain A,

• • • • • •
• • • • • •
• • • • • •

Subdomain A,

• • •
• • •
• • •

0
0 •

Fiber Material Collocation Points Matrix Material

Fig. 3. The computation model of a quarter RVE.
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Reference Material Matrix Material Fiber Material

Fig. 4. The 2-D geometry of a periodic composite with square fibers.

ffOijd"r, - r')<5Ck1mn(r')£mn(r') dYer') = SijkIC21~'] <5Cul'mn£mn(xi, x~)
A,

+ f VijktCxi- x'], x~ - x;) dx;<5Ck1mn(xi, x~)£mn(xi,x~)
Csquarc-Cf;

(10)

Equation (10) is now known in closed form and covers the RVE. To solve for the strain
one must deal with integration over the infinite body via the two-dimensional version of
eqn (I). Here, we develop the two-dimensional version of eqn (I) for a periodic structure
only. The results for other cases could be developed in an obvious manner. In numerical
computation for the periodic structures or other cases, practical considerations require that
the integration be treated in an average sense beyond some distance from the point of
interest. Based on convergence studies for the periodic structures studied here and elsewhere
by Walker et al. (1989, 1990a, b, 1993), we find that explicit computations with the first
nearest neighbors is adequate and generally is within 1% of calculations involving more
distant neighbors. We note that for all subdomains outside of the RYE of interest the
integration yields only the last term in eqn (10) for each subdomain because they contain
no singularities. The second term in eqn (I) becomes the average of all the terms from eqn
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(10) plus the summation terms from the neighboring RVEs with p subdomains, such that
the second term of eqn (I) is as follows:

IIUljdxi- x~, x~ - X;)<5Ck1mn(X'I, X;)Bmn(X'I, x;) dA(x;, x;)

A

= IIUljdxi- X'I' x~ - X;)<5Ck1rnn(X;, X'!)Brnn(X;, x;) dAc(x~,x;)

A,.

(II)

where the primed sum in the second term on the r.h,s, in eqn (11) denotes the summation
in which the term with both m, = 0 and m2 = 0 is deleted, where m, and m2 are the numbers
of the nearby periodic RVEs and II and /2 are the dimensions of a quarter RVE.

The final expression of the integral equation [eqn (1)] in two-dimensional form is

( "") 0 If u- (" , " ') 'C (' J) (' -') dA(' -')BIjXI,X2 =£Ij- IjkI\XI-X"X2-X2U klmnXI"\2BmnXI,X2 Xl ,X2

A(x'I,.'(2)

+ ~( II dA,{xi,x~) II Uljklxi-x;,x~-x;)<5Ck'mn(x~,X;)Bmn(x;,x;)dA(x'j,x;), (12)

A,.(x'i ,x'2) A (X'j ,x2)

Equation (12) is evaluated by utilizing eqns (10) and (II) and the results in the Appendix,

4. LOCAL FIELD DETERMINATION

The local strain field is described in terms of unknown coefficients 1]0-tJg. However, it
is more convenient to solve for unknown strains at chosen collocation points because the
collocation point strains have an easily understood physical meaning. The sets of unknown
strains are equivalent and easily interchangeable with the coefficients 1]0-'78 via eqn (3).
The nine collocation source points, fJl-f39 were chosen to be evenly distributed over each
subdomain for the quadratic polynomial approach as shown in Fig. (3). In introducing
these unknowns the integrals are expressed in terms of weights Wwhich can be found from
the closed form integration given in eqn (12). The initial expression is

IIU,/klxi- x~, x~ - X;)<5Cklmn(X~, x;)BmAx~, x;) dAJx'I' x;)

A,.

~~f!,

= L Wij(~ne~n = wtf,'.~ne~in + W"!ninB~2n +... + J¥,'tinB~9", (13)
fi~P,

where the weights J¥,'~", wt!ni", . .. , wtPn are fourth-order tensor components corresponding
to strain tensor B~~, ... , B~91l'

Equation (13) must be equal to the l.h.s. of eqn (11) and so from the closed form
integration of eqn (11) we can obtain the weights. To do this we equate eqn (13) with eqn
(11) for each type of term in eqn (3) one at a time beginning with the constant term, yielding
the following equations from which we can find the weights,
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ffu- (" , , ,),C (' ').] dA(x' x') - un./i, .] + TV,/i,.] + ... + unf!•• ](jkIXt-XI,Xl-X1U klmn x l,x2 ..' 1,0" 2 - '"'Yljmn r"ijnin Y"ijmn ,

A,

ff OijktCX~ - X;, X~ - X;)bCklmn(X~, X;)· x; dA(x;, x;) = w:f,,:nX ;({3I) + W://,inX ;({32)

A,.

ffu-('-' '- ').<C (' ,). '2 '2A(' ')_un/i, '2({3) '2({3)ijk/XI X I,X2 X 2 v k/mnXI,X2 X IX2 X I,X2 -rrijmn-J(2 I X 2 I

A,.

In eqn (14) the I.h.s. integrals are known and the weights can be found by inverting the
matrix. Equation (12) then becomes:

(15)

where a, {3 and y, ranging from 1 to M, are the ath, {3th and yth collocation points andr is
the volume fraction factor of the yth subdomain. The number of the total collocation points
in the RVE is equal to 9p for the quadratic polynomial.

Rearranging eqn (15), we obtain the following set of linear algebraic equations:

with

for a = 1,2, ... , M, where (16)

Equation (16) can be further written in matrix form to form a set of linear equations with
9k unknown collocation point strains which can be readily solved by standard methods.
Each matrix element a{3 of the matrix B consists of a 6 x 6 submatrix, in the form:

[B,f!]{e/i} = {eO}, (17)

B";f! R';f! B'f! ~~ R';/i B";/i
II 12 13 15 16

~~ K;fl B'fl jJ';fJ K;f! B"t,22 23 24 25

B".JI B,/i ~~ ~~ sa,f! ml
[B"P] =

31 32 35 36

B';,J! ~~ Jr.fJ B"l Jr.f! ~~
(18)

41 43 45

B'f! B'P B'l B"l m fl
Jrs~51 52 53 54 55

H6~ mil B'l H6~ m fl B'P62 63 65 66

By solving this group of linear algebraic equations, we then obtain the local strain field e~.
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Xl/II

Fig. 5. Local stress 0"" by a quadratic polynomial approach, Et!E", = 3, VI = V", = 0.3, VI = 0.25,
fiber region: 0 < x, < 0.5, 0 < x, < 0.5.
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5. EXAMPLE STUDIES

To test the accuracy of the method we apply this method to a layered composite
structure for which the stresses should be exactly constant. Figure (I) shows the model,
while the calculated stress field by a quadratic polynomial approach is shown in Fig. 2.
Stresses are constant up to three digits showing good accuracy. From the calculation, the
results are already convergent when first and second nearest neighbors were included.

We next apply this method to a periodic composite with rectangular fibers under
uniaxial tension, Fig. 4, in which each phase is isotropic and homogeneous, with material
properties given by EjlEm = 3, Vf= Vm = 0.3. Due to the geometry and loading symmetry,
we need to solve only a quarter RVE.

A quarter RVE of the composite is represented by Fig. 3 where four subvolumes and
36 collocation points are used for the case of the quadratic polynomial. Figures 5-7 show
the resultant local pull direction stress for solutions with the full quadratic polynomial, a
linear polynomial, and subvolumes with only constant terms for a fiber volume fraction of
0.25 and the fiber region, 0 < XI < 0.5, 0 < XI < 0.5, as indicated by the dashed line. The
case with constant terms had a number of subvolumes such that the total number of
unknowns was the same as that in Fig. 5. It is readily apparent that the quadratic polynomial
results in Fig. 5 are superior to the results from using the constant strain subvolumes.

The governing equation, eqn (12), if solved exactly, will yield results independent of
the reference modulus. Figures 8 and 9 show that volume averaged quantities, strain energy
and effective transverse modulus are virtually unaffected by the reference modulus chosen,
and also vary by only 1% as the order of the polynomial changes.

Figure 10 shows the effective transverse modulus vs fiber volume fraction for the three
different polynomial representations. It should be noted that there were 36 subvolumes for
the constant polynomial, nine subvolumes for the linear polynomial and four subvolumes
for the quadratic polynomial used in Fig. 10 such that the size of the matrix equation to be
solved is the same for each case. For these polynomials the computed transverse moduli
are within I% of each other. A model with only four subvolumes and a single constant
term representation of the strain was run and the effective transverse moduli vs fiber volume
fraction were still within 2% of the moduli found using four subvolumes and quadratic
polynomials. Thus, excellent volume averaged properties can be obtained from the simple
models even at high volume fractions and in this case using only 4 CPU s. All cases are in
reasonable agreement with Christensen's results for circular fibers. We note that the square
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80

70

0.2

X 2 11
2

Fig. 6. Local stress 0'11 by a linear polynomial approach, EIIEm = 3, vI = Vm = 0.3, VI = 0.25, fiber
region: 0 < Xl < 0.5, 0 < x, < 0.5.

80

70

X 2 11
2

Fig. 7. Local stress 0'" by a constant polynomial approach, ElfEn; = 3, VI = Vm = 0.3, VI = 0.25,
fiber region: 0 < Xl < 0.5, 0 < x, < 0.5.

fiber results presented in Fig. 10 are below the rule of mixtures, an upper bound, and above
Christensen's results.

6. CONCLUSION

An efficient method was developed to determine the local elastic field and the overall
elastic behavior of a heterogeneous medium based on the singular integral equation
approach via a Green's function technique. Based on our previous work on subvolume
techniques, the solution can be obtained by a contour integral and the Eshelby tensor. The
singular integral can then be evaluated in closed form for assumed polynomial strain
distributions with terms up to quadratic in the position coordinates on a rectangular
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Fig. 8. Volume average strain energy vs reference modulus.
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Et : Effective Transverse Modulus
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Vr : Fiber Volume Fraction
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1.0 1.5

Ererl Em

Fig. 9. Effective transverse modulus vs reference modulus.

subdomain. This closed form integration allowed the development of a higher order sub­
volume technique than the previous techniques which were based on assumed constant
strain within the subvolume. The technique is used to solve a problem of a rectangularly
packed composite with square fibers. It takes less than 90 CPU s on a Sun workstation for
the numerical solution. The results are reasonable when compared to previous results.
Volume average quantities vary by less than I % with the choice of the reference modulus.
The comparison of results using low order and high order polynomials shows that the
simplest four-subvolume constant polynomial approximation yields excellent volume aver­
age quantities. The local stresses using different order polynomials are significantly different
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Vr

Fig. 10. Effective transverse modulus vs fiber volume fraction.

and improved with the higher order method when compared to the lower order methods
using the same number degrees of freedom.
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APPENDIX
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I. G,k(r,-r')

The Green's function components in eqn (2) for the isotropic reference material with constants i,o and p," are
as follows

in which Ir,-r'l = v' X 2 + y 2 +Z2
, where X = x~ -x;, Y = x2_·x;, Z = x; -x;.

2. a;;kt<X~ - x;, x2- x;)

From eqns (4) and (AI), we have 0udx~ -X'I, X2 -x;) = f::;:" x UUkAr, -r') dx', and

For example:

(AI)

(A2)

where

From eqns (AI)-(A3), it can be shown that

2(X' +6X2y' -:3 y4)
11111(X, Y) = ,

(X2 + y')]

_ 2(3X' - 6X' y' _ y4)
1"dX, Y) = ,

(X2 + y')]

2(X'-6X'y'+ y4)
II I 22(X, Y) = .

(X'+Y')'

From eqn (II), we have the following relationship

Similar to the relationship between liikl and 0Uki in eqn (A3), the following is evident:

(A4)

(AS)

(A6)

where

( ' " ') S ( , ')d -2X(X'+3Y')
qllJI X 1-X 1,X2 -X2 = t lill S,X2-Xl s= ,

(X2+ y 2)2
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and:

J. Cheng el al.

f qllll(x~-x;,x'2-x;)dx; =4(1-71:),

C"'U3TC

f q2222(xi- X'I' x'2 -- x;) dx; = 4(1- 71:),

cS~Uilr"

f ql122(x~-x'"x,-x;)dx; = -4,

c'4uarc

l ("" ')d' 3r qlll1 X 1-Xl,X 1 -X2 X 2 = - 1r,

C~"rdc

f q2222(x~-x'"x'2-x;)dx; = -371:,

C
~Hdc

l (' ' , ')d'j ql122 Xl -X b X2 -X2 X2 = -no

C"<dc

(AS)

(A9)

(AlO)

Combining eqns (A7)-(AIO), we find that fc~".«-c""" Vijk~X~ -x'" x, -x;) dx; are constants.

4. JH v, _ v"""UUk,(r, - r')bCklmn(r')8mn(r') dV(r')

As an example, here we show the procedure for the quadratic term. Two cases, i.e., the subdomain with and
without the singularity, need to be considered.

(I) Subdomain with singularity: (x~, x'2H Ak

From eqns (3) and (5), and the relationships between Oil" and I"kl' the integration with respect to 0UkIX'l' x';' can
be reduced to that with respect to liikl and X'" r', m = 0, I, 2. The following, for example, gives the results for 1111 ,

and X2 yL

f

"f" f"f"2(X4+6X2Y2 3y4)
III II (X, y)'X2y 2 dXdY= ,- 'X2y 2 dXdY

,. a ,a (X2 + Y')'

= 4a4a tan (~)-4a4atan (~-4b4atan(~)+4b4atan(0
2acs 2ad' 2bc' 2bd 5

- ~~ +~- -4a'c+4a3d+2ac'-2ad 3 +~~ + ~--4b3C-4b3d-2bc]+2bd" (All)
a2 +c2 a2+d' b'+c2 b2 +d2

where, Ak : XiI < x', < XI' x~ < x; < x2, can be rewritten as a < x',-x~ < b, C < x;-x'2 < d and a = x~ -XI,
b = x~-xl; c = X~-X2' d= Xl-xi.

(2) Subdomain with the singularity: (x;, x2) E Ak

The singularity part is discussed in the above and Section 2 and it is found to be a constant over a small square
domain. Now we show how to evaluate the integration in the remaining subdomain Ak-A, and obtain its limit
value as A, --> O.

From eqn (12) we have the following:

v fa U,jk~r,-r')bCklmn<r')8mn(r')dV
l ,qua""

(AI2)

Now the integration domain, Ak - A,qu,,,, is as follows:
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(X 'I -X" x; -x~) E {«(a, b), (c, 11) - «( -b, b), (-b, o»}.

Similarly, we again use t lill and X' Y' as the example and the integration is reduced to the following:
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(AI3)

(f"f" f" f" )2(x'+6X'Y'-3Y
4
) (I-O fJ(I-' I")2(x'+6X'Y'-3P)_ . X' Y' dX d Y = + + .X' Y' dX d Y

,a -, -, (X'+y')3 ,. 0 a , (X'+Y')'

(I-' I""' I-' Ih. I" I-' idih) 2(x' +6X' Y' - 3 y
4
)= + + + ·X'Y'dXdY.

,u ,. ,> 0 a '0 (X' + y')J

Letting A, ---> 0, i.e. 0 ---> 0, we have the following:

f

- 'f-o 2(X4+6X' Y' -3 y 4) (C) 2a3c(2a' +c')
lim,_o 'X'Y'dXdY=4a4atan - - ,

'u (X'+ y')3 a a'+c'

fdf-62(X4+6X'Y'-3Y4) 2a3d(sa'+d') (n
lim,_o . X' Y' dX d Y = -4a4atan - ,

, a (X' + Y')' a'+d' a

f

-' f" 2(X
4
+6X' Y' - 3 y 4) (C) 2bd

5
lim,_o . X' Y' dXdY = -4b4 atan -b +-- +4b3c-2bcJ ,

" (X'+ y')' b'+c'

ill I" 2(X
4 +6X' Y' - 3 y

4
) (f) 2bd

s
limo_o . X' Y' dXdY = 4b4atan -b - --- -4b Jd-2bd 3

" (X'+ y 2)3 b'+d'

For the other terms, the same technique applies.

(AI4)

(AI5)


